$4^{\text {th }}$ Grade Math

Module 5: Fraction Equivalence, Ordering, and Operations

Math Parent Letter

This document is created to give parents and students a better understanding of the math concepts found in Eureka Math (© 2013 Common Core, Inc.) that is also posted as the Engage New York material which is taught in the classroom. Module 5 of Eureka Math (Engage New York) covers fraction equivalence, ordering, and operations.

Focus Area Topic G:

Repeated Addition of Fractions as Multiplication

Words to Know:
Compose -change a group of unit fractions with the same denominator to a single non-unit fraction or mixed number

Decompose - change a non-unit fraction or mixed number to the sum of its parts or unit fractions
Mixed number - number made up of a whole number and a fraction
Line plot - display of data on a number line, using an x or another mark to show frequency

Here's something to think about.

OBJECTIVES OF TOPIC G

Represent the multiplication of n times a / b as $(n \times a) / b$ using the associative property and visual models.
Find the product of a whole number and a mixed number using the distributive property.

- Solve multiplicative comparison word problems involving fractions.
- Solve word problems involving the multiplication of a whole number and a fraction including those involving line plots.

Focus Area Topic G:

Repeated Addition of Fractions as Multiplication

Using the Associative Property

Multiplying a whole number times a fraction was introduced in Topic A. Here's an example of how a fraction can be decomposed and rewritten as a multiplication sentence.

$$
\frac{3}{5}=\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=3 \times \frac{1}{5}
$$

Now students will use the associative property to multiply a whole number times a mixed number.
Consider this example. $5 \times\left(3 x \frac{1}{2}\right)$
Each plate has $\frac{1}{2}$ of a cake on it. There are 3 plates on each table. There are 5 tables in the room. To find out how much cake there is, first we can think about the plates on each table and write $3 x \frac{1}{2}$ which would give us the amount of cake on each table, $\frac{3}{2}$. Now, we can multiply the amount of cake on each table, $\frac{3}{2}$ by 5 , the number of tables in the room. $5 \times \frac{3}{2}$
$5 \times \frac{3}{2}=5 \times$ (3 halves)
(5×3) halves $=15$ halves
15 halves $=7 \frac{1}{2}$ cakes in the room

Example Problem and Answer

Draw and label a tape diagram to show the following are true. 8 fifths $=4 \times(2$ fifths $)=(4 \times 2)$ fifths

Focus Area - Topic G:

Using the Distributive Property
Students will explore the use of the distributive property to multiply a whole number by a mixed number. We can use the distributive property to show 4×32 as $(4 \times 3$ tens $)+(4 \times 2$ ones). The following area model uses the distributive property.

Students begin to see the multiplication of each part of a mixed number by the whole number and use the appropriate strategies to do so.
In the following example, we use a tape diagram.
Let's say we want to multiply $2 \times 5 \frac{1}{4}$.
We can create a tape diagram to show $5+\frac{1}{4}$.

Since we are multiplying by 2 , we will draw our tape diagram 2 times.

We rearrange the parts of our tape diagram to show our wholes together and our parts together

Therefore

$$
2 \times 5 \frac{1}{4}=(2 \times 5)+\left(2 \times \frac{1}{4}\right)=10 \frac{2}{4}
$$

Module 5: Fraction Equivalence, Ordering, and Operations Example Problems and Answers
A grocery store had a sale on rice. Eight families each bought $2 \frac{1}{2}$ pounds of rice. How many pounds of rice did the store sell to these families?

$$
\begin{aligned}
8 \times 2 \frac{1}{2} & =(8 \times 2)+\left(8 \times \frac{1}{2}\right) \\
& =16+\frac{8}{2} \\
& =16+4 \\
& =20 \quad \text { The store sold } 20 \text { pounds of } \\
& \text { rice to these families. }
\end{aligned}
$$

Understanding Line Plots

A line plot is a graph that shows frequency of data along a number line.

This chart shows the heigth in cm of 8 plants.

Plant	Heigth in cm
A	2
B	2
C	$\frac{1}{2}$
D	1
E	2
F	$1 \frac{1}{2}$
G	1
H	2

Example Problems and Answers
What is the difference in growth of the tallest and shortest plant?

first
$2-\frac{1}{2}$
$\frac{2}{2}$

Therefore
$2-\frac{1}{2}=\frac{3}{2}=1 \frac{1}{2}$

